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ABSTRACT
This paper is concerned about the mathematical aspects of the two model
equations which describe nonlinear wave motions in a rotating fluid. We
establish the local existence of solutions and show that singularities occur
in a finite time under certain hypotheses. We also show that these equations

admit nonconstant travelling wave solutions. »{
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SIGNIFICANCE AND EXPLANATION

We study the model equations which describe axially symmetric long wave
motions arising in a rotating fluid; see (0-1), (0-2) in the Introduction. We
discuss qualitative behavior of these model equations and compare them with
the K-dV equation and Burgers' equation (without dissipation). The dispersion

mechanism of our model equation is weaker than that of the K-4V equation (see

BBM [2]); we show that the local solution (in a reasonably smooth function
space) cannot be extended to a global solution in general, which is in con-
trast to the case of the K-dV equation. Nevertheless, the dispersion

mechanism of our equations is able to sustain nonconstant travelling waves,
which is impossible in the case of Burgers' equation (without dissipation).
We discuss the equations in more general forms and derive the properties of

our model equations from the general results.
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ON THE MODEL EQUATIONS WHICH DESCRIBE NONLINEAR

WAVE MOTIONS IN A ROTATING FLUID

Jong Uhn Kim

0, Introduction
The purpose of this paper is to report some results on qualitative
properties of the two model equations which arise in the theory of long waves

in a rotating fluid:

3
(0-1) u +au +uu + Aa-; f:. St dn = 0,
x (x=n)"+B

2
) - u(n,t
(0-2) u +au +uyg - A — — I 7—%&1-0.
t x x it 3x2 - (x-n) +B

Equation (0-1) was derived by Leibovich (9]). This equation describes axially
sysmetric long wave motions of small amplitude in inviscid, incompressible,
rotating fluids which are radially infinite. Here A # 0, B> 0 and a are
real constants, t is the time variable and x 1is the axial coordinate.
When r denotes the radial coordinate, the wave disturbance stream function

¥(r,x,t) is assumed to be of the form ¥P(r,x,t) = eé(r)ul(x,t) and u(x,t)
satisfies (0-1); for details, see [9). Equation (0-2) is oktained from (0-1)
by exploiting the zero-order equivalence of %; and - g: (see BBM (2])).

It is interesting to compare Equation (0-1) with Burgers' equation

(without dissipation) and with the K-dV equation:

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041. This
material is based upon work supported by the National Science Foundation under
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(0=3) u, + cmx + uu = 0

(0-4) u +tou +un tu o= 0.

Equation (0-3) is obtained from (0~1) by deleting the dispersion term and

Equation (0-4) has a dispersion term which is stronger than that of (0-1); see

BBM (2]. Now we consider some basic mathematical questions associated with an

evolution equation:

(Q1) Does there exist a unique local solution of the initial value problem in
a reasonably smooth function space?

(Q2) Can this local solution be defined globally in time in the same function
space?

(Q3) Does the equation admit a nonconstant continuous travelling wave solution?
The main results of the present paper are the answers to these questions;

see Theorem 1.1, Theorem 2.1, Theorem 3.4 and Theorem 3.6. Actually we

discuss more general equations which include (0-1) and (0-2). The qualitative

theory for Equation (0-4) has been developed by many authors and the results

are well-known. With regard to the above questions, we compare the equations

as follows:

(0-1), (0-2) (0-3) (0~4)
Q1) Yes Yes Yes
(Q2) No No Yes
(Q3) Yes No Yes

This summary will be explained in details in the subsequent sections.




Notations. The standard notations at, 3x, tt' fx are used for

) ) af 9
5;, 5;, 5:, 3&, respectively. PFor a given function g, its Pourier

transform is denoted by g and we employ the standard definition:
g(f) = 7%; f:_g(x)c-lxedx.

H', s > 0, stands for the set of all real~valued functions g in Lz(R)

such that f:_(1+|€|2)slq(6)lzd£ < ®; and the norm 1I-+1 . is taken to be
2 (= 2.8, .2 1 H
igh s - f_.(1+|5| ) (g(E)|aE. H (o,p) denotes the set of all real-valued

) :
functions in Lz(o,p) whose first order derivative is also in Lz(o,p). The

elements of Cy(R) are continuous functions in R which vanish at infinity.
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1. Llocal Existence of Solutions

Under some physical hypotheses, the general model equations for long f

waves are given by either ' !

- + + + =
(t=1) u aux uu axr1u 0
or

- + =
(1-2) u, <mx + uu + 8t!§u 0,

where P; and P, are pseudo-differential operators. In the derivation of
such equations, the operators I&, i=1,2, are usually determined from the
dispersion relation in terms of their symbols ;1(5), i=1,2 (see (1), (2],
[9]). Hence, we assume that the symbols ;1(5), i=1,2, are given in advance
to define the operators !1, i=1,2, PFor (0-1), (0-2), the corresponding

operators are given by
~ " 2 2
(1-3) P (E) = B, (E) = nf;e K, (BIED),

wvhere Ko(°) is the modified Bessel function of the second kind of order
zero. In this section, we establish the local existence of solutions to
{(1-1), (1-2) in the case where the symbols !1(5), i=1,2, satisfy the

following conditions:

(1-4) !1(5), i=1,2, are even, real-valued functions,
~ -
(1-5) Epl(E) eL, i=1,2;

(1-6) for some -1 <8 <cM<ceo, § ¢ Pz(E) € M holds for almost all

EeRr,




; Since Ko(IEI) behaves like =loglf] for small £ and like /2'Z| .'|€| 3
t ‘} i
|
i
i

for large £, it is easy to see that (1-4), (1-5) are satisfied by (1-3), and i

ff that (1-6) is satisfied when A > /rg =1 + Now we state the
)

max szo(nlil)
EeR

local existence theorem:
Theorem 1.1. Suppose the conditions (1-4) to (1-6) hold. Let
s > 3/2 and uo(x) e n'. Then, there is a positive number T depending on

luol s such that (1-1), (1-2) have unigue solutions in
H
c(10,m; 8% N c'(0,1:8% ") satisfying u(x,0) = ug(x). |

(proof) let = > -:— be given. By virtue of (1-4) and (1-5), it is obvious

that £ » axP1f is a continuous mapping from H' into itself satisfying:

- ]
(1=7) 12 P.F) < NEP_(E)V If1l , for all £ eBR,
X1 s VU et
~ s
(1-8) 'ax’if'ax'tg'Ig < |Ep1(E)lL°|f-g|L2, for all £, g@H .

Following the notations in Kato (6], we take X = Lz, Yy = H®, Then, by means

of (1=-7), (1-8), we find that Equation (1-1) is a special version of Example
8.1 in [6); and so, we can employ Kato's result directly to obtain a unique

-~1)

solution in C((0,T)s %) N c'([o,r); H for some T > 0. Next we rewrite

Equation (1-2) in the form:

(1=9) “t + aux + uux + !’3(aux + ““x) =0,

where ;5(E) - —ré(z)/1+r2(£). By taking account of the hypotheses on

P,(£), it can be easily shown that if u € C([0,T); 8% n c'cro.rn 1* Y,

s> 2, then (1-2) and (1-9) are equivalent, that is, a solution of (1-9) in

the above function space is also a solution of (1-2) and vice versa. The

-5- H




conditions (1-4) to (1-6) imply that £P,(£) e L  and £ + 2f  isa

continuous mapping from H® into itself. The mapping (f,g9) + £fg is a
continuous bilinear mapping from H° x H° into Ho, provided o > 1, and

hence, it follows that for all f e H',

- 2
(1-10) |1-3(<:;fx + farx)|“II < MIEP3(E)IL.(IfIH' + mH’)

axd for all f, g e H‘,

| - - - _

: (1=11) Ira(ufx+ffx) P,(ag +gg )b , < MIEP, ()8 '[Iﬁglﬁslf gl , + if-gl 2},
L L L L

where M > 0 depends only on ao. By taking X = Lz, Y = H', and using

(1-10), (1-11), it is easily seen that (1-9) is also a special version of

Example 8.1 in [6]; and the local existence of solutions to (1-9) follows

immediately.
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2. Formation of Singularities

Since local solutions have been obtained in C([0,T); H‘), 8> 2, we
shall examine the possibility of extending a local solution to a global
solution. It turns out that singularities develop in local solutions under
the additional assumptions and thus, a local solution cannot be extended
globally in time in general. In the present section, we assume not only (1-4)
to (1-6), but also the following conditions:

(2-1) e’p,(6) e 1%

(2-2) g%p,6) e’ n 12

Obviously, (2-1), (2-2) are satisfied by (1-3). The main result of this
section is:

Theorem 2.1 Under the above assumptions, the local solutions of (1-1), (1-2)
in c({o0,T); Hs), 8 > 3, cannot be extended globally in time in the same

function space if the initial function uo(x) e s satisfies:

(2-3) L < x

2 1 for Equation (1-1);

- 2? for Equation (1-2),

where A = fu } >0, u=-min u (x) and « {resp. x_,) is a positive
0 L2 xR 0 1 2

constant depending only on P, (resp. Pz). As a consequence, we have the

following

Theorem 2.2 let 8, < 3 be given. Then, for any € > 0, there are initial
s

data uo(x) in H ! such that Iuol s < € and no global solution




8
satisfying the initial condition u(x,0) = u (x) exists in c([0,=); H 3,

3
for any 8, > 2°

i (proof) We may take

N jw

< s, < 3-§ for some § > 0. Let f be any

. 5
} 81 276 x
' (nontrivial) function in H and define fe(x) =€ f(;]. Let
i -8
! g = 1£(=)1 g r= -min fx(x) and p = 1£(*)1 e’ Then lfe(-)l 2 ™ e3 8, ;
L x€R - 1 L :
3 % 5 f
5-6 ) 3-8 > 3-51-6
min £f_ (x) = -€ r and If _(+)1! <2 "¢ B+ 2 "¢ p. By taking ¢
€x € s
x€R H 1

sufficiently small, fe(') is a desired initial function satisfying (2-3) and
(2-4).

To prove Theorem 2.1, we need the following lemma:
Lemma 2.3 Suppose (1-1), (1-2) have solutions wu,(x,t), u,(x,t), res; -
tively, in cC(10,T); ®), s > 372, satisfying ui(x,O) = uo(x) e Hs,

i=1,2. Then, it holds that

(2~5) Iu1(x,t)l . luo(x)l 27 for all t € (0,T),
L L
(2-6) lu:(x,t:)lll2 < Hluo(x)le, for all t e [0,T),

where M is a positive constant depending only on P,.
(proof) Combined with (1-1), (1-2), u(x,t) e C([O,T): Hs) implies
u(x,t) e c'(to,m); #°"'). Multiplying both sides of Equations (1-1), (1-2)

by u1(x,t), uz(x,t). reapectively, and integrating over R, we obtain

d 2
(2-7) ;: - u1 (x,t)dx = 0,
a = - - 2
(2-8) 3 [ (142, () ) 1u (e, 00| 7aE = o,
since
L] @
(2-9) [ o8y dx =0, [ __(wu, )u ax =0, i=1,2

e J




@ _~ ” 2
Juax = [__1EP (E)lu (E,t)|"aE = o.

®
(2-10) [,
(Notice that u, is a real-valued function and hence, IG,(E.t)lz is an even
function of £.) (2-5) is implied by (2-7) and, by making use of (2-8) and
(1-6), (2-6) is easily deduced

Now we proceed to:
(proof of Theorem 2.1) With the aid of (1-4) to (1-6) and (2~1), (2-2), we

c
can express P fx and P3fx (defined in the preceding section) for £ € H ,

1

o> 1, as follows:

L -]
(2-11) P = [ G (xy)IE(y)dy, i=1,3,
where Gi' i=1,3, satisfy
2 2
(2-12) G,eL, G _eL,
(2-13) c,et’nc,c _et’nc
3 0’ T3x 0°

3
We assume that for given nontrivial uo(x) in H®, 8 > =, there is a global
solution u(x,t) of (1-1) in C([0,»); Hs) which, combined with
(1-1), implies u € c1(R x [0,%)). Following the classical theory of the

characteristics, we solve the initial value problem for each fixed n € R:

(2-14) inﬁtﬂl = a + ulx(t,n),t),
(2-15) x(0,n) = n,

Observing that u(x,t) is uniformly bounded on R x [0,T), for each T > O,
1
we can conclude that x(t,n) e Cc ([0,2) x R} and that x(t,nz) > x(t.n,) for

all t > 0, provided n_>n (see Hale (5]). With this x(t,n),

2 1

u(x(t,n),t) is regarded as a function of t for each n and satisfies, for

-9~




e

each fixed n,

(2-16) Egu(x(t.n),t) = -f:_G1(x(t,n)-y)u(y.t)dy. for all t » 0,

and

Since uo(n) 7 0, there are u > 0 and n, < n2 such that

u(n ) -uin)
(2-18) 0 i _ no LI
2 1

-n, =2 > 0. From (2-16), (2-17), it

Let us set w = uotn1) - uo(nz) >0, n 1

2
follows that for all t > 0,

u(X(tun1)tt) - u(x(tlnz)lt) =

(2.19)

t
uy(ny) = wgny) = [oat [T {6, (x(1,n,)=y) = G, (x(t,n)-y)} uly,T)dy,
which, together with Lemma 2.3 and (2-12), implies

t
(2-20) u(x(t,n1),t) - u(x(t,nz),t) > w-fodr M1A|x(r,n1)-x(t,n2)|,
for all t » 0, and

(2-21) Iu(x(t,n1),t) - u(x(t,nz),t)l < w+ f;dr M1A |x(t,n‘)-x(1,n2)|,

= A= . -
for all t » 0, where M1 IG1x'L2 and luo(n)lL2 But, (2-14) and

{2-15) yield

T

(2-22) |x(r,n1) - x(T.nz)l <+ dclu(x(c,n1).c) - u(x(c,nz),c)l~
0




1
Consequently, for all 0 < t < :. we have

(2-23)

t T
<w+ fodr MA {8+ [ aclulx(z,ng),g) - ulx(g,n,) .01},
0

by using w = fu,

M,A t
1
< w(1e5) + M2 / ag(e-g)lulx(g,n,),0) = ulx(g,n,), o)l
u 0
M1X t 1
< w(1e5-) + M2 [ gt lulx(g,n,),0) = w(x(g,n,), 0. i
b o ‘

By Gronwall's inequality, we arrive at

MA M )‘/Zu2

(2-24) lutx(t,n,),8) = ulx(t,n,),e)] < o 1+5-)e ! .
u
for all 0 <€ t < %, and hence,
1/u 1 M1X M1A/2u2
(2-25) M. (2 =g)lu(x(g,n,),8) - wix(z,n),0)1ap € MAw(1+—-) — e .
1 0 u 1 2 1 u2 2“2

In the mean time, substituting (2-22) into (2-20) we have, for all

1
< —
0<¢t ‘ M A

¥
u(x(t,n1),t) - ulx(t,n,),t) > w(1 - ;3—)

t T
- u [ arf aclulx(z,n,),0) = ulx(g,n,),0)] '
0

(2-26) 0
M1x t
=w(1-—) - MAf sz(e=g)lulx(g,my), ) = w(x(Z,n,),8)1
u 0
M1X 1/u 1 :
> w(1 - =) - M ag(= - g)lulx(g,n,),8) = ulx(g,n,), 01, j
f 0 o .

by using (2-25),

-1t-




MA ML M M1A/2u2
>m{1-—-—(1'0—-e }.

2 2\

] 2p u

Now we choose X > 0 such that 1

1 %%
(2-27) M1{K + 5K(1+M1K)e } < 2’
1,
21" ;
(2-28) M1xe < 2
Then,
A
(2-29) - € x
o
implies
1 1
(2-30) u(x(t,n1),t) - u(x(t,nz),t) > Em, for all 0 € t € ; .

Por the remainder of proof, we assume (2-29) holds. We proceed to estimate

x(t,nz) - x(t.n1). Combining (2-14) to (2-17), it is apparent that

t T -
(2-31) x(t,n) =n + [ ar{atug (n) - [ acf e, (x(z,m-y)uly.L)ay},
0 0

for all t > 0, n € R, and thus,

x(t.nz) - x(t,n1) =
(2-32)
ft T{.
L-ut odtfodc [ (6 (x(E n,)=y) = G (x(L,n,)-y)Iuly,g)ay}.
Set f(t) = x(t.nz) - x(t,n1): then, f£f(t) > 0 for all t > 0. From (2-32),

we derive the estimate:

t T
£(t) < £ - ot + [ ar{m [ £(z)ac)
0 0
t
(2-33) =2 - wt + M) [ (e-0)f(p)ag
0

t
<t-wt+mMdf (& - £)f(g)ag, for all 0 < t < & .

0




By the generalized Gronwall inequality (see Hale (5]),

e, n,x/zuz
£(t) < £ -~ wt + n,x[ (; - g)(2-wg)e a&
0
(2-34) 2
M_A/2p
=% -ut+Mle ! (%5t - 82, %wts),
u ¥
1
for all 0 < t € o
In particular, 2
1y 1 MM
(2-35) :(;-) < M e =
u
from which we deduce, using (2-28), (2-29),
1 1
u(x(l.nz). ‘) - \l(x(-.n').l)
(2-36) —_— o ¢ -3,

1 1
x(u.nz) - x(u.n‘)
Hence, for some Y, > ¥4,

1 1
(D) - aly )
n-y

Let us susmarize what we have obtained so far: If we suppose that
u(xz.O) - u(x,,o)

u(x,t) e c((0,»); H’), s>, - -y <0, x, > x, and
xz - x1 2 1
-'-‘i’i;—'”—':.’ < ¢ (defined by (2-27), (2-28)), then at time ¢t = ;’,
u

u(yz,t) - u(y,.t)
—= = «3u, for some Y. > Y..

Yz - Y‘ 2 1 ,
Recalling that fu(x,t)f 2 is constant for all t > 0, taking ; as our

L

initial time and repeating the above process, we arrive at

1 1 1 1
u(zz,— + 3—) - u[z1,- + 3—)
(2-38) ——u it .,
2 1




for some =z, > z_,. By indefinite iteration, we conclude that as ¢t

2 1
1 1 1 31
approaches —(1 + -+ — 4+ ...) == =, -min u (x,t) tends to +®, which
] 3 32 2y xer *
contradicts our assumption that u(x,t) € C([0,»); ﬂ'), s> %. This completes

the proof for Equation (1-1). As mentioned in the preceding section,
Equations (1-2) and (1-9) are equivalent provided
u(x,t) e ¢([0,T); H'), 8 > 3/2; hence, we consider (1-9) to prove the

assertion for (1-2). By virtue of (2~13), we derive that for all f e Lz(R),

(2-39) {6, (x,-y) - G, (x,-y)}£(y)ay| < |x1-x2|lG3le2 mn2

and

(2-40) |f° {G (x,~y) - G, (x -y)}lf(y)lzdyl < Ix,-x_[1G, 1 _Ifl 2
- 737 3772 123xL°L2'

Using these inequalities and Lemma 2.3, and going through the same procedure
as above, we can arrive at a similar conclusion for Bquation (1-9); we omit
the details.

Seliger [10) also considered some model equations of nonlinear wave
motions. However, the method in [10] is not applicable to our problem. The
main reason is that uxx(x,t) may not be defined as an ordinary function
under our assumption. Even if all the assumptions in [10] were met, a result
analogous to Theorem 2.2 cannot be inferred from the result of [10). Finally,
we recall some known results on the solutions of (0-3) and (0-4). For a given
initial function in Hs, 8 > 3, (0-3) and (0-4) have unique local solutions
in c(lo0,T); H'), 8 > %; see Kato [6], [7). It is known that a local

solution of (0~4) in C([0,T); H®) can be extended globally in time provided

8 > 2, while (0-3) does not admit any global solution in

C((0,»); H'), s > %, unless the initial function is identically zero.




(3-1)

(3-2)

3. Existence of travelling wave solutions

We shall seek solutions of (1-1), (1-2) in the
form ¢(x-ct), ¢ # constant. For this purpose we consider the following

equations with c # a:

1 1 1 .2
¢ - c-a 10 =2 c-aQ '

c 1 1 .2
¢ - a-c!’z’¢ 2 c-c' *

Let us suppose that P,, P, are convolution operators with a kernel in

' (r)

é(x=-ct)

and that ¢(*) is a solution of (3-1) (resp. (3-2)) in LO(R). Then,

is a solution (in the distribution sense) of (1-1) (resp.{1-2))

1 2
provided uu, is interpreted as (5“ )x° Therefore, we try to find solutions

of (3-1), (3-2) under the following assumptions on P1 and Pys

(3-3)
(3-4)

{3=5)

(3-6)

a

Pi(E), i=1,2, are even, real-valued functions;
- 1 2 a 2
Pi(E) €L yL and EEP&(E) eL ,i=12;
there exist p> 0 and s # 0, P1(0), such that the set
{g: P'(E) = g} n {2*k/p: k=0,1,2,...} is not empty and
consists of odd number of points;
-1 »
there exist p > 0 and s # e 0, PZ(O), such that set
s 27k
{(g: B (E) = s} N (—;-: k=0,1,2,...} 1is not empty and

consists of odd number of points.

Theorem 3.1 Under the assumptions (3-3) to (3~5), there are nonconstant,

periodic solutions to (3-1) for suitable c # a.

Theorem 3.2 Suppose that o # 0 and that (3-3), (3-4) and (3-6) hold. Then,

(3-2) admits nonconstant periodic solutions for suitable c # a.




(proof of Theorem 3.1) Let us write (3-1) as

1, ,2
(3-7) ¢ = AR0 = 2A¢°,

where A 1is a parameter. By virtue of (3-4), we can define a function F(¢)
such that P(£) = P, (E)) then, F 1is an even function in L'(R) (see [8]).

Consequently, P1 is defined by

(3-8) (P ¢)(x) = /= Pix-y)e(y)dy, for all ¢ e L (R).

Next we define

(3-9) F (x) =) P(x+tkp),
P e

with p which appeared in (3-5). Then the series converges absolutely at
almost all x and Fp(x) is a p-periodic, even function. It is easy to see
that rp(x) is integrable over [0,p] and can be expanded in trigonometric

functions:

v V2m 2 c2mky U p
~ ’—
F (x) kz_o o o o Je
(3-10)
~ 120 o P, (0) + Z 2/2" ; (21&)cos EIEK)
P ko1 P P

Next we define the function space

(3-11) P = { Z a cos(~——x): a_€R, Zola | {1+(2'k) } < =}

k=0
1
2

2%k 2})

equipped with the norm [ Z la |2{1+( and the corresponding inner

product; then, lb is a real Hilbert space. We also define the operator

T
p DY

-16-




(3-12) (T ¢)(x) = [P » (x-y)0(y)dy, for each ¢ €8.
P 0 p p
Then we have
Lemma 3.3 Tp is a compact, self-adjoint operator in li and has an
eigenvalue /3;3 of odd multiplicity (recall that s and p appeared in

‘3-5))0
[_J
2%k
(proof) Let ¢ = I a cos(--x) € 8. Then, from (3-10) and (3-12), it
k=0 P P
follows that
(3-13) 'r¢~2/2: r( )u.k (2"‘ ).

By the Riemann-Lebesqgue Lemma, p1(355) converges to 0 as k tends to

infinity and we obtain the estimate

-1 T 15,(25) P1a, 12 (15(25)?) < ma n(m):’fn 2{14(2K)3,
k=0 k=0

which implies that the infinite series of (3-13) converges absolutely for

all x and is equal to (Tp‘)(x) for all x. Now it is obvious that Tp is

a continuous mapping from lb into itself and that Tb is self-adjoint in

'b' For each m » 1, the operator Tb'm defined by

(3-15) LI -Z /7 p (22 ™8)a, cos(Z¥x),

for ¢ = z a, cos(zizx) e l%, is a compact operator from sp into itself.

k=0
since the operator norm IT_ - T | is bounded bv V2% max IP ( )I. we
P pm om1 |
conclude that ITL - Tp .l converges to 0 ag m tends to 1nfin1ty. Thus,
’

Tp is also compact. Finally, combining (3-5) and (3-13), we deduce that

Y2n 8 is an eigenvalue of odd multiplicity in lh-
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2
Lemma 3.4 The mapping of ¢ + ¢° is a C -mapping from 8, into itself.

(proof) First we observe that the sp norm is equivalent to the H‘(o,p)

L
norm and that sp is a closed subspace of H‘(o,p). Let ¢ = ) a cog[—zz—kx) e sp
k=0

and ’n = Z a
k=0
we infer that ’m e 8; for each m. In the meantime, it is known that if

X cos(gizx). From the identity cosB8 cosy = ;{cos(8+7) + cos(B-Y)},

1 1
f, g€ H (0,p), then fgeH (0,p) and Ifgl , < MIfl Il |
H (0,p) H (0,p) H (0,p)

holds with a constant M > 0 independent of f, g. Therefore ¢i converges
to 02 in H'(O,p) as m tends to infinity and we conclude that ¢2 e sp.
Now it is easy to see that the mapping ¢ + ¢2 is Ca from sp into itself.
With the aid of Lemmas 3.3, 3.4, we can easily show that all the
hypotheses in Theorem A of Westreich [11] are satisfied. Hence, it follows

1
that [73#;, 0) € R x Sp is a bifurcation point for the equation
1,.2
(3-16) ¢ ~ ATP¢ = 5A¢ .

In other words, for any given € > 0, there is a nonzero element Oe in

1
- A
Sp and Ae € R such that IAE /iisl < €, l¢el < e and ( e’ ¢e)

S
P
satisfies (3-16). It remains to show that for sufficiently small € > 0, Oe
cannot be a constant function. In fact, when ¢e = p, for some constant ¢,
0 < lpl < g, (3-16) implies

—_ 1, 2
(3-17) p - Aelzw 91(0)9 = zxep .

If € is sufficiently small, 1 - AE/E; P‘(O) is bounded away from zero by

the condition (3-5) and consequently, (3-17) cannot hold for small p # 0. If
[ -]
¢ e sp, then ¢ is a p-periodic, continuous function in L (R} and it

holds that
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p
(3-18) / lp(x-y)oly)dy - f:_r(x-y)O(y)dy.
0

Hence, a solution of (3-16) in l%

suitable c # a. This completes the proof of Theorem 3.1.

is alao a solution of (3~-1) by choosing

(proof of Theorem 3.2) Suppose that o # 0 and write (3-2) as

-(A+

(3-19) o - Ap ¢ = SAF1,2

2 2a
where A is a parameter. The above proof of Theorem 3.1 can be repeated to
establish the existence of nonconstant periodic solutions to (3-2). The
additional conditions that s # -7%: and that a # 0 are necessary to choose
a constant ¢ corresponding to suitable A, that is, ¢ € R can be chosen
so that = a2 when A # -1, a ¥ 0.

a=-c

As an application of the above results, we specialize on (0-1) and (0-2),

which we rewrite as

9 ,®
(3-20) u, +ou +un 45 [_T(x-y)uly,t)ay = 0,
(3-21) +au + -2 f. M{x-y)u(y,t)dy = 0
u, u tuu -3¢ Ll (xyiuly,tidy ’

2

where T(x) = Ag—s 7F?;ﬁ§ « This interpretation of (0-1) and (0-2) is

ax” /x"+B
admissible since the original model equation was derived in terms of the
symbol of the operator (see [9]). Moreover, this form of the equations has an
advantage in respect that the integral is well-defined when u(°,t) is merely
in ﬂ'. Rastricting our attention to the case ¢ > a, our claim for Equation
(3-20) is:
Theorem 3.4 Suppose that A # 0 and B > 0. Then, (3-20) has nonconstant,

periodic travelling wave solutions of the form ¢(x-ct), ¢ >a. If A <O,

-9~




the amplitude of ¢ can be arbitrarily small (with c-a bounded away from

zero)e If A >0 and c -a > € for some € > 0, then there is no

N|m

nonconstant, periodic solution of the form ¢(x~ct) with 14} - <
- 5 o L
(proof) We consider Equation (3-1) with P (§) = -n/ sk xo(Blﬁl), where

xo(°) is the modified Bessel function of the second kind of order zero. It

2
is known that & K°(|E|) is nonnegative for all £ and that it behaves like
3

-52109|€| for small £, and like %IEI2 e-|£| for large £. Moreover,
max szo(BIEI) occurs at a single point, which we denote by EO:

E>0

1.55/B < Eo < 1.56/B. Accordingly, the conditions (3-3), (3-4) are satisfied

and we choose

/ 2 2
(3-22) sy = ~AY T £ Ko (BE )
and
21|’ko
(3-23) Py = Eo , for any fixed positive integer kg,

so that the condition (3-5) is satisfied. 1In fact, the set

- 2%k
{€: P1(E) = so} N {—%—: k=0,1,2,...} is a single point Eo and hence, the
0

— 2
eigenvalue V2% s (or -ZAEO KO(BEO)) is simple with an eigenfunction

0
cos(&ox). Here we can use a theorem of Crandall-Rabinowitz [4] to conclude
that (3-1) has solutions

$(x) =€ cos(on) + eg(e)

with ¢ - a = /E;so + h(e) for sufficiently small € > 0 where g(e) is a

c  function of € into the complement of span {cos(on)} in qpo and
o
h(e) is a c function of € into R such that g(0) = 0, h{(0) = 0.
When A <0, s, is positive by (3~22) and thus, the first part of the

theorem has been proved. Next let us consider the case A > 0, which

implies s, < 0. Since we are interested in solutions of the form
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¢(x-ct), ¢ > a, we define a new function ¥ Dby

(3-24) Y = <2(c-a) + ¢,

and write (3~1) in terms of Y:

1 1 12
(3-25) Y-ooRYes Y,

where we have used the fact that P1 annihilates constant functions since
;1(5) - _l/r§'52x0(3|£'). Now we have @ - ¢ in place of ¢ - a, which is
the only difference between (3~1) and (3-25). So we know that (3-25) has
solutions € cos(f x) + €g(€) with a ~c = /5?.0 + h(e) for sufficiently

small € > 0, where g, h are the same functions as above. Hence we have

obtained solutions ¢(x) of (3-1) in the fora
2
¢(x) = 2{2a¢, K, (BE) - h(e)} + ¢ cos(£yx) + egle),

with c~a = ZAEozxo(BEo) - h(e), which is positive when A > 0 and ¢ is
sufficiently small. Finally, we suppose that A > 0, c - a > € > 0 and that
(3-20) has a nonconstant periodic solution ¢(x-ct) in ﬂ' with period p.

Then, using (3-18), we find that ¢(x) satisfies

P
1 1 2
(3-26) o(x) - —= jo rp(x-y)o(y)dy = oyt () + M,
where M s a constant. Let us define
1,P
(3-27) oi{x) = ¢(x) - =] ¢(y)dy
0

and write (3-26) in terms of 0(x):

~21-




p ~
2(c-a) p(c-a)(IOO(Y)dY)U(x) + M,

1 P 12 1
(3-28) o(x) - ~—[ F_(x-y)o(y)dy = ————0°(x) +
c-a’,'p

~ P
where M 1is a constant and we have used the fact that f Fp(x-y)dy =0
~ o
(notice that P1(0) = 0). Multiplying both sides of (3-28) by o(x) and

integrating over (0,p), we obtain

(3-29) fpoz( yax € ——{1o1 1|fp ( )‘q|}fp 2(x)ax < ——2141 fp 2 (x)ax
. x o—a'2 b o¢ 2IN oo x s ¢ -~ 00 (x)ax,

P
since f o(x)dx
0

P P
0 and [ (f Fp(x-y)¢(y)dy)¢(x)dx =

0

o © 2

— 2 = c2mk 2,2y _ 2nk 21k 2.2

/2npp, (0)a, +k£1/?17291[ > )(a b, ) = kZ1Ap( > ) KO(BT)(ak +p,°) < 0,
[ ]

where &(x) ~ J (a
k=0

2nk 2nk
X cos—;— x + bk sin—;-x). Since ¢ is nonconstant,

P, c-a €
f 0 (x)dx > 0 and hence, it follows from (3-29) that 141 _ > > > 2" This

: co:cludes the proof of Theorem 3.4. -
Remark 3.5 We note that there are infinitely many s, p such that

{¢g: ;1(E)=s} r\{E%E: k=0,1,2,...} is a single point; we could have chosen
other points rather than s, Py in the above proof. Now we elaborate on
this fact. When P1(€) = -A//EFEZKO(BIEI), ;1(5) is monotonically increasing
on [O,Eo] and monotonically decreasing on [§o,°) or vice versa depending
on A. Therefore, it is easy to show that the set

{s: ap > 0, 3: s,p satisfy (3-5)} is dense in the interval (0,s;) (or
(so,O)). Suppose A < 0. Let s, be any number in (0,s,) and 61 < £2 be
two roots of ;1(5) =5, If (3-5) is not satisfied by Sy, we infer that if

E' = 2!k1/p for some p > 0 and integer k4 > 0, then there is a positive
integer k, 8O that 52 = 2wk2/p. Suppose this is the case. Set

s = s,~6 > 0, for small 6§ > 0. fThen, £, =27k /p, §
some p > 0 and integers k,, k, > 0. Let 51* < 52' be roots of

= 2%
2 kz/p for

-22-
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P1(E) = 31' and choose p* so that 51' = 2nk1/p'. Obviously,

* L ] * * =
E' < E1 < 52 < Ez . Thus, p* > p and 2ﬂk2/p < Z!kz/p 62. If § is

sufficiently small, then p*, 52* are so close to p, & respectively, that

2’
there is no integer kz* > 0 such that Ez* = 2ﬂk2*/p' > Zﬂkz/P = 52- Hence,

s, - § may be taken to satisfy (3-5). The proof for the case A > 0 is

similar.

Now we turn our attention to Egquation (3-21), for which our assertion is:
Theorem 3.6 Suppose a > 0, A# 0 and B > 0. Then, (3-21) has nontrivial,
periodic travelling wave solutions of the form ¢({(x~-ct), ¢ > a. If A < 0,
the amplitude of ¢ can be arbitrarily small (with c-a bounded away from
zero). If A >0 and c - a > €, then there is no nonconstant, periodic

solution of the form ¢(x-ct) with B¢l _ < £

n7, 2 /7 2
(proof) We consider Equation (3-2) with PZ(E) =a = £ KO(BIEI), where the
bifurcation parameter X is related to c by ;g; = A. Hence, ¢ > a holds
if and only if A < =-1. Suppose A < 0. With the aid of Remark 3.5, we can
find 51 >0, p, >0 and integer k, > 0 such that 61 = 2wk1/p1,
/ 2 2
-1 < 2A¢ 2K (BE,) < 0 and such that s, = AY — §_"X _(BE, ), p, satisfy the
10 1 1 ™10 1 1
condition (3-6). By repetition of the previous argument, we derive that (3-2)

has solutions

€ cos(€1x) + sg1(e)

1
with A = 75;—;: + h1(E) for sufficiently small € > 0, where g1(€) is a

c' mapping of € into the complement of {cos(E1x)} in sp and h1(€)

1
is a co-mapping of € into R such that g1(0) = 0, h1(0) = 0. Now we can

A < -1, For the case A > 0, we again use

def 2a
Remark 3.5 after introducing ¥ == VI ¢ as in the proof of Theorem 3.4.

[
choose c > a such that a-c

The last assertion is also proved as before and we shall omit the details.




Remark 3.7 It is well known that the K-dV equation admits both solitary wave
solutions and periodic travelling wave solutions. For Bquations (3~-20),

(3-21), the existence of solitary wave solutions is not known.
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